Development of new ultrafine cemented carbide by WC-Ti(C,N)-Cr₃C₂-Co alloy Masayuki TAKADA*, Tomohiro TSUTSUMI*, Yoshihiro MORI*, Hideaki MATSUBARA**

*Nippon Tokushu Goukin Co., Ltd., **Tohoku University

Introduction

The demand for ultrafine-grained cemented carbide as wear-resistant tools and cutting tools is increasing due to their high hardness and strength. The addition of VC has the strongest effect on grain growth inhibition (refinement) of WC particles in ultrafine-grained cemented carbide, followed by the addition of Cr_3C_2 . However, the ultrafine-grained cemented carbide with VC single addition has been rarely used in practice; VC dissolves in the liquid phase during sintering precipitates as a (W,V)C phase or a V-concentrated phase during cooling, and this phenomenon is thought to reduce the alloy properties.

Pinning (Zener) effect that the dispersed (second phase) particles inhibit grain growth of matrix phase is well known for metals or ceramics. However, it is unclear weather the grain growth during liquid phase sintering of cemented carbides can be prevented or not by the second phase (solid phase) particles such as Ti(C,N) particles. Furthermore, the combining addition of Ti(C,N) with Cr₃C₂ should more largely inhibit the grain growth than that the single addition, consequently VC-free ultrafine-grained

Results and discussion

Microstructures

Fig.3 High Resolution SEM microstructures of WC0.4µm-Ti(C,N)-16.4vol%Co cemented carbides.

0.5µm

•No.1~3 contribute to grain growth inhibition. • The most common from of Ti(C,N) present is No.1~3, No.4, 5 were rare.

Fig.2 SEM microstructures of WC0.4µm-XC-16.4vol% Co cemented carbides.

• It is clear that grain growth inhibited by the pinning effect even in the presence of a liquid phase. •Grain-growth inhibition effect is TaC<Ti(C,N) \Rightarrow Cr₃C₂ \leq VC/Cr₃C₂<VC.

cemented carbide can be obtained.

Fine Ti(C,N) particles were introduced to the cemented carbide with ultrafinegrained WC and sintered in this study, and whether the grain growth of WC particles could be inhibited at that time was investigated using microstructural observation. Furthermore, ultrafine-grained cemented carbide with the combined addition of Ti(C,N) and Cr_3C_2 was fabricated, and mechanical properties were investigated after microstructural examination.

Purpose; VC-free ultrafine-grained cemented carbide

Method

I. Dispersion of fine Ti(C,N)particles inhibits WC grain growth by effect pinning (Zener effect). II. Combined addition of Cr_3C_2

Why Ti(C,N)?

alloy microstructure. 1.Ti(C,N) is likely to be present as a pin because of its low solubility in the liquid phase.

2.Nano-sized TiO_2 is commercially available.

Mechanical properties

Point

 TiO_2 (20 nm) is used as a starting material and carbonitrided during sintering to Ti(C,N).

Experimental Procedure

Table1 Starting powder, size and maker.				Table2 Composition ofthe specimens (vol%).							
Element	Starting	Size	Makar	Signal	Ti(C,N)	TaC	Cr ₃ C ₂	VC	Co	WC	
	Powder	(µm)	IVIAKEI	non-addition					16.4	bal.	
WC	WC	0.4, 1.0	A.L.M.T	TaC		3			16.4	bal.	
Со	Со	0.8	Umicore	Cr_3C_2			3		16.4	bal.	
TaC	TaC	1.0	Japan New Metals	VC				3	16.4	bal.	
Cr_3C_2	Cr_3C_2	1.0	H.C. Starck	Ti(C,N)	3				16.4	bal.	
VC	VC	1.0	Japan New Metals	VC/Cr ₃ C ₂			1.9	1.3	16.4	bal.	
Ti(C,N)	TiO ₂	0.02	Nippon Aerosil	$Ti(C,N)/Cr_3C_2$	1~5		0~2		16.4	bal.	

•Hardness increased with amount of both Ti(C,N) and Cr_3C_2 , but toughness decreases.

• The average strength in 3% Ti(C,N)-0.5% Cr₃C₂ alloy is **extremely high at 4.7GPa**. This alloy exhibits a maximum strength of 5.1GPa.

• $Ti(C,N)/Cr_3C_2$ composite additives showed higher strength than those non-addition or VC/Cr₃C₂ composite additives.

• The number of broken pieces increases in the order of $(a) \rightarrow (b) \rightarrow (c)$. The higher strength, the greater number of fragments.

	I	· · · ·	I
5-			U ₃
4		U ₂	u u
		-22	\overline{U}_1
GPa	N		-
Qq		7,	<u>//////n/n/n/n/n/n/n/n/n/n/n/n/n/n/n/n/</u>
2-			-

Cutting Condition	Composition of the drills					
Drill: ϕ 6mm Coating: PVD-TiAlN	Category	Composition	Hardness (HRA)			
Work material: S50C	$Ti(C,N)/Cr_3C_2$	WC(0.4µm)-Ti(C,N)-Cr ₃ C ₂ -Co	92.8			
Cutting speed: 88.5[m/min] Feed speed: f=0.13[mm/rev]	VC/Cr ₃ C ₂	WC($0.4\mu m$)-VC-Cr ₃ C ₂ -Co	93.4			
Hole depth: 20mm(Blind hole)	Cr_3C_2	WC(1.0 μ m)-Cr ₃ C ₂ -Co	91.7			
Cutting fluid: water-soluble	Straight	WC(2.0µm)-Co	90.0			

Number of holes

TRS

(GPa)

4.6

3.6

3.9

3.3

()	250	500	750	1000	1250	1500	1750	2000	225
i(C,N)/Cr ₃ C ₂										
VC/Cr ₃ C ₂										
Cr ₃ C ₂										
Straight										

Fig.9 Number of holes to be machined until lifetime.

Ti(C,N)/Cr₃C₂ composite added alloys can generate longer-life tool comparing conventional alloys.

 $Ti(C,N)/Cr_3C_2$ composite is the VC-free ultrafine-grained cemented carbide with very high strength, making it a very promising tool material.